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and 

Ju(12) = (Vl-- V )i(V2- V~)s[(V+(I')v(1) 

x ~ + (2)V(2 ' ) ) -  (~,+ ( I ' )v(1))  

x (¢+(2)V(2'))]  

= ( - 1 )  (2m12 [(j~°)(1)j~°)(2)) 
\ i e /  

_ ( j  ~o)(1) ) (j5°)(2))1, (III-8) 

where we introduced the density operator 0(1)= 
V+(1)V(1) and the current operator j(0) defined by 
equation (IIA-7). From equation (III-7), it is obvious 
that iS(12) is related to the generalized dielectic func- 
tion (including the core electrons). 
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The One-Dimensional Anti-Phase Domain Structures. I. A Classification of Structure 
and the Patterson Method Applied to the Layer Sequence Determination 
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The one-dimensional anti-phase domain structures with an out-of-step vector u = (a + b)/2 are classified 
into the following three kinds: (1) The complex out-of-step structure, (2) the complex APD (antiphase 
domain) structure, (3) the simple APD structure. These structures are characterized by the use of the 
similar symbols to the Zhdanov symbol. Intensity formulae are derived for some typical cases. The 
application of the Patterson method gives some useful relations between the symbol adopted and a 
quantity which is obtained by Fourier cosine transformation of the unitary intensities. Since this quan- 
tity is any one of a set of integers of the form (pz_ 4qP) (P: period, q • integer), the correct layer sequence 
may be obtained even if the observed intensities are not so accurate. Applications for some ideal and 
real cases are shown. 

1. The unitary intensity 

An example of the one-dimensional anti-phase domain 
structures of AaB-type with an out-of-step vector, 

( a+b)  
u -  2 ' (1) 

t Present address: Department of Physics, Osaka Kyoiku 
University, Tennoji, Osaka, Japan. 

is shown in Fig. 1, where the out-of-steps occur along 
the e direction at every four unit cells, and the structure 
consists of two kinds of unit cells as shown in Fig. 2. 
The structure factor of the unit cell shown in Fig. 2(a), 
which is denoted by Vo, is expressed as 

Vo=fa +fA[exp {zci(~ + r/)} + exp {zci(r/+ O} 
+exp  {zci(¢ + ~)}] 

where f .  and fB are the atomic scattering factors of A 
and B atoms, respectively, and ~, r /and  ( are the par- 
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b 

( 

o o o o .  

o 1 1!, o o o o l.I ooT. oom 

u= (a+b) /2  

0 A atom 0 B atom 

Fig. 1. An example of the one-dimensional anti-phase domain structure of A3B-type with an out-of-step vector u =(a +b)/2 and 
with half-period M=4. 

ameters along a*, b* and c*, respectively; a*, b* and e* 
are the reciprocal vectors of a, b and c, respectively. 
On the other hand, the structure factor of the unit cell 
shown in Fig. 2(b), which is obtained from V0 by dis- 
placing the structure by the out-of-step vector, u, is 
given by 

Vo=~Vo 

where e is the phase factor corresponding to the out- 
of-step vector, u, and is expressed as 

e=exp {hi({ +r/)}. 

By the use of V0 and V0, the intensity of X-rays dif- 
fracted by the crystal can be expressed in electron units 
a s  

I (°) = Vo VoG2(~)G2(~)I(~o) (2) 

with 

sin nK~ sin nLr/ 
GI(~)- and G2(r/)- 

sin n~ sin nq 

where we assume, that there are K and L unit cells 
along the a and b directions, respectively. The last 
factor in equation (2), I(~0), is called the unitary inten- 
sity and expressed as 

I(~o)= ~(~o)~*((o)--- ~ en exp (in~o) ~o=2n~ (3) 
n=O 

© O 

c 
(a) positive cell (b) negative cell 

0 A atom O B atom 

Fig. 2. Two kinds of unit cells in the one-dimensional anti- 
phase domain structure of A3B-type shown in Fig. 1. 

where 
1 when the nth cell is V0 

~n when the nth cell is Vo 

and we assume that there are N unit cells along the e 
direction. 

Since we have two Laue functions, G2(~) and G2(r/), 
in equation (2), the crystal can be considered to have a 
layer structure and hence we have only to pay attention 
to the cases corresponding to 

{ ~=h  h: 0, +1, +2, +3, . . .  

r /=k k" 0, +1, +2, + 3 , . . . .  

As a result, en in equation (3) becomes 

1 when the nth layer is the positive one 

e, = ( _  1)h+ k when the nth layer is the negative one 

(4) 

where positive and negative correspond to V0 and V0, 
respectively. 

2. A classification of  the structures 

Similarly to the Zhdanov symbol for the close-packed 
structures, a layer sequence symbol to specify the 
structure of a one-dimensional anti-phase domain 
structure is conveniently defined by a set of positive and 
negative numbers such as 

(albla2b2a3b3 . . .  a ,b , )  

with a period 
t 

/ ' =  ~ (at + b3 
1----1 

where at and b~ are the numbers of successive positive 
and negative layers, respectively. The corresponding 
structure will be hereafter called a complex out-of-step 
structure. 

If P is even i.e. P = 2 M  and if the sign of each layer 
in the last M layers is opposite to that of the corres- 
ponding layer in the first M layers, the structure is 
called a complex APD (anti-phase domain) structure and 
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denoted as ([M] I [.2fir]) with [M]=(alb~azb2... a~b~a, + 1).* 
The vertical line in ([M] I [/CF]) means that the last [gift] 
is obtained from the first [M] only by changing all 
the signs; corresponding to this change in signs a hori- 
zontal bar is put on as [2}St]. Half a period M is given by 

s + l  

M =  ~ a ~ +  b~ with P = 2 M .  
i = 1  i = 1  

By comparing the symbol with that of the complex 
out-of-step structure, we have the relation 

2s + 1 = t. (5) 

The simplest structure of the complex APD structure 
is obtained by putting s = 0 and al = M. This structure 
is called a simple APD structure and denoted as (M I/Q) 
with P =  2M. 

According to the above classification of the struc- 
tures, the structure shown in Fig. 1 is a simple APD 
structure, (4 1 4) with P = 8. A standard structure, which 
Fujiwara (1957) adopted when he analyzed the struc- 
ture with M =  1.8J" is given by ((22221) I (2222])) i.e. 
([9] I [9]) with [9] = (22221) and P =  18 and hence be- 
longs to the complex APD structure. Fujiwara also 
considered other structures slightly deviated from the 
standard structure. One of them is (2222122212) which 
belongs to the complex out-of-step structure with 
P=18 .  

3. Calculations of the unitary intensity 

If a complex out-of-step structure has a period P, the 
unitary intensity defined by equation (3) with equation 
(4) is rewritten as 

I (q~) = I1a~ (@) (6) 

G'(:?) - 

where 

sin2 N0 P~0 
2 sin 2 zcNoP( 

sin2 P~o sin2np~ 
2 

ll = Vh~u~= e, exp (into) = ~. e, exp (2rein0 
= n = 0  

I 
P - - 1  2 

= ~ e~ exp (inlO) (7) 
n = 0  

with 
O= 2rc/P and N= PNo (8) 

and the suffix I in Iz comes from the fact that I(@) has 
sharp maxima at 

l 
( = - f f  l:  0, +1,  +2, + 3 , . . .  (9) 

* Another form (albla2b2... asbsas+lbs+a) can be transformed 
into the above form by displacing b8+1, for example, 
(431gl~t3T2) --+ (6311(;3i). 

I" The case of a non-integral value of M, which was treated 
by Fujiwara (1957), will be treated in the forthcoming papers 
as part II and part III of this series. 

because of the Laue function, G2(~0). Therefore, omit- 
ting the Laue function, we may call 1~ the unitary 
intensity. 

When h + k is even, we have e, = 1 and hence we get 
at once 

Therefore 

/ l  ~ 

sin2 ( N ~  - ) 
I(~0)= (10) 

from which we obtain 

Iz=p26z,,e and I(2nrO=p2N~=N 2 (11) 

where 6~,,,e is Kronecker's delta with n = 0 ,  + 1, + 2, 
. . . .  This equation gives the unitary intensities of the 
fundamental reflexions, and holds in general even if 
there is any disordering in the stacking of layers. 

The intensities of superlattice reflexions can be cal- 
culated as shown below for some typical cases. 

(i) (M 2fir') 
The unitary intensity for the simplest structure of the 

complex out-of-step structures, which is obtained by 
t= 1, al = M and bl = M',  i.e. (M2~')with P= M + M',  
is readily calculated, and we obtain 

IM-~ ~,-i 12 I ,=  ~ exp (in~o)+e exp (iM~o) ~ exp (in~o) 
n = O  n = O  

= [ 1 - e  c o :  c o s  

x cos (P@/2)]/sin z (~o/2). (12) 

Since we have e = - 1  for superlattice reflexions, equa- 
tion (12) with equation (9) turns to 

2 
Ii= sin2 (~l/p) { 1 - ( - 1 ) l  cos ~--~lp ( M - M ' )  } .  

Therefore 

nl ( M - M ' )  4 sin 2 -~ff 
I~= for l: even 

sin2 n___/_/ 
P 

zd ( M - M ' )  4 cos 2 -~ff 
I~= ~l for l" odd, 

sin z - -  
P (13) 

from which we have 

I o = ( M -  M') 2. (14) 

(ii) (M M +  1) 
When M ' = M +  1 in case(i), we have (M M +  1) with 
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P = 2 M + I  and hence from equations (13) and (14) 
we have 

1 
l t=  for l: even 

cos2 rcl 
2P 

1 
Iz= for l: odd .  

sin2 zd 
2P (15) 

(iii) (MI ASr) 
When M '  = M  in case (i), we have (MI A St) with 

P = 2 M  i.e. the simple APD structure, and equation 
(13) gives 

[ I~=0 for l: even 

I s -  4 for l: odd.  
s in  2 

--if- (16) 

(iv) ([M] I I/if]) 
The unitary intensity in the case of the complex 

APD structure, ([M] 1 [37]) with P=2M,  is given by 

I I Is= {1 +e exp (iM~o)} ~ e,, exp (in~o) 
11=0 

=2(1 +8 cos Mp)I'~ (17) 

with 
M - 1  [2  

I ; =  ~ e, exp(in~o) (18) 
n=0 

This form is different from 1~ in equation (7) because 
in It the summation is carried out over n from 0 to 
P -  1 while in 11 from 0 to M -  1 i.e. over half a period. 
As a result, for the superlattice reflexions, we have 

Iz=0 for l: even (19) 

1~=4I*1 for I: odd.  

The first relation in equation (19) gives the extinction 
rule in the case of the complex APD structure [see 
equation (41)]. Equation (19) includes equation (16). 

4. The Patterson method 

Because, as mentioned in the previous section, the 
unitary intensity of the fundamental reflexion is usually 
given by either equation (10) or equation (11), the in- 
formation with respect to the layer sequence is included 
only in the superlattice reflexions. Therefore, in this 
section we are concerned only with the superlattice 
reflexions i.e. the case of e = - 1. In this case, equation 
(7) is rewritten as 

e-1 e-1 ( e-l-, , ,  \ 
/ l =  ~ 4 +  ~ Z e.e.+m/exp (-imlO)+conj.  

n--O m----1 n=O / 

P - 1  2n 
=P+m~l(A, , -Bm)eXp(- imlO)+conj . ,  O- p 

(20) 

where conj. means the complex conjugate of the fore- 
going term. Am and Bm are the numbers of pairs sepa- 
rated by m layers with the same and different signs 
respectively when the mth layer is limited within one 
period as shown in Fig. 3(a) and (b), where examples 
of (323211) with P =  12 are shown for the cases of 
m = 5  and 7. 

Putting 

N+=Ara+Ap-m(1-~m.o) N~=Bm+Bp_m 

m: 0 , 1 , 2 , . . . , P - 1  
P--1 

D.,=N+-NT.,= ~. e,,e,,+,,,, ( 2 1 )  
r im0 

we can rewrite equation (20) as 
P - 1  2z~ 

Is = ~ Dm cos mlO with 0 -  . (22) 
m=0 P 

N + and N;, in equation (21) are found to be respec- 
tively the numbers of pairs separated by m layers with 
the same and different signs, when the mth layer is 
allowed to go into the next period, as can be seen in 
Fig. 3(c). 

From the definition o f N  + and N,7, in equation (21), 
we have the relations 

N+-==N +,  N ~ - m = N ~ ,  N + + N m = P .  (23) 

Therefore 

Dm= 2N + - P = P -  2N~ = De_,,, 
(therefore D0 = P) .  (24) 

In the case of complex APD structure, we have 

e,+M = - e ,  (25) 

m = 5  I* + + - -  + * * - -  + - I  
I * *  * - - *  * * - - * - I  

÷ ÷ ÷ ÷  + ÷ -  

A s = 6 ;  Bs=l 

(a) 

m = 7  I + + * - -  + + + - -  + - I  
I * * * - - * * * - - . - I  

A7==2; B7=3 

(b) 

m=5 i:÷÷__÷÷ ÷__÷__1 
I * * + - -  * * - - ÷ - I * * * -  

÷ ÷ ÷ ÷  ÷ ÷ - -  ÷ - - - - - - +  

N;=As÷AT=6~-2=8=N;  

N~'=Bs*BT=I* 3 = 4 = N 7  

(c) 

Fig. 3. Am, Bin, N + and N ~  with m = 5 and  7 in the case o f  
(3~3~1]') with P =  12. 
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and hence we get Din+ M =-Dr,, ,  which, with equation 
(24), gives the relation 

DM_m= Dm+M = --Din . 
Therefore 

D M = - D o = - P  and DM=O (M:even).  (26) Y 
From equation (22), we obtain at once two general 
relations 

P - - 1  

le_t=Ii and ~ II=PDo=P z. (27) 
1 = 0  

The latter relation gives the normalization condition 
which is necessary when the observed intensities meas- 
ured in an arbitrary unit are converted into the unitary 
intensities. 

By the Fourier cosine transformation of equation 
(22), we obtain 

P - 1  

Cm = ~ 1, cos mlO= D~P (28) 
1 = 0  

in which Co gives the same relation as equation (27). 
Since Cm is an integral multiple of P, we may deter- 

mine the correct layer sequence even if the observed 
intensities are not so accurately measured, as will be 
seen in § 7. 

The relation between C~ and the usual Patterson 
function 

P(uvw) 1 

is as follows: 
Values of (uvw) are limited to the following two 

cases as 

( 0 0 ~ - )  and ( ½ ½ p - )  

and 
1 

voP O0 ---- ~ff(P2q-Cm)=N+ 

1 
voP ( ½ ½ p )  = ~-ff (e2-Cm)=Nm 

(see Appendix I), where v0 is the volume of the unit 
cell with a height Pc. 

5. The relation between Cm 
and the layer sequence symbol 

In the case of the close-packed structures, one of us 
and others (Kakinoki, Kodera & Aikami, 1969) ob- 
tained useful relations between the letter sequences in 
Zhdanov symbols and a set of C~ and Sin, where Cm 
and Sm are respectively the Fourier cosine and sine 

(-) - - .  

Fig. 4. Routes contributing to N +. 

transformations of the unitary intensity. Similarly in 
the present case, we can obtain useful relations between 
the layer sequence symbol and Cm. From equation (27), 
we have Sin= 0. In order to derive the relations, it is 
useful to consider N + which is related to Cm and Dm 
by the relation 

D,,=Cm/P=2N+-P=Dp_,n (29) 

[equations (24) and (28)]. 
If  cop ~ r ~ is defined as the occurring frequency 

1 1 ' ' "  g g  
of a 2g letter sequence SUCh as px~xp2~_2. • ._P,n~ with 
g <  t in the layer sequence symbol (axbla2b2...atb,), 
then we have from the definition the following rela- 
tions: 

COp= ~ (0r,=t, ~p(0p+ ~ n(0r,=P (30) 
p = l  n = l  p = l  n = l  

( 0 P l ~ l . .  " Pgng = ( 0 ~ 1 P 2 ~ 2 . .  "Pgng , 
P l = l  

(0p1~1""p,~,=(0pl~1""p, ' " ' "  (31) 
ng= l 

p=l n = l  

Examples of the notation (0~1_~1...p~, are as follows" 
In a layer sequence symbol (312231), they are 

(02= (0~= 1, (03 = (0i = 2 

(03i = 2, (012  = ( 0 2 ]  = (0ff.3 = ( 0 i 3  = 1 

( 0 3 i 2  = (0i2ff, ~ -  (02ff,3 = O92.3i = ( 0 3 i 3  = ( 0 i 3 i  = 1 
(03i22, = (0i27,3 = (02ff.3i = (0ff,3i3 = ( 0 3 J 3 i  "~" ( 0 i 3 1 2  = 1 

and so on. 

[ m = 1 [ If we have a letter p in the layer sequence 
symbol, the number of pairs contributing to N + is 
p -  1 and if we have a letter/i in the symbol, the number 
is n -  1, and N + can be calculated as 

N + = ~ (iv - 1)(o 9 + ~] (n - 1)(0a = P -  2t 
p = l  n = l  

by the use of equation (30). As a result, we obtain 
from equation (29) 

Dl= P - 4 t =  C1/P . 

[ m =2  [ The routes contributing to N + are shown 
in Fig. 4, where the upper row indicates the positive 
layer and the lower one the negative layer. There are 
two sets of routes i.e. 

the first set: ~ and 

the second set: ~ and ~ . 

If we have two letters, p and/i, in the symbol, the num- 
ber contributing to the first set of routes is [ ( p - 2 ) +  
(n-2) ]  so long as p, n > 2, and hence the total number 
contributing to the first set, N +~1), is calculated as 
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Nz+(i)= ~ (p-2)o9, ,+ ~ (n-2)o9~ 
P= 2  n = 2  

= ~ (p-2)o9 .+o9~+ ~ (.-2)o9~+o9~ 
p=t n=l 

=P-4t+{#,} 

by the use of equation (30), and {12t} in the above 
equation is 

{Od=o91+o9i .  

If  1 and 1 are in the symbol, we have the second set of 
routes, and by the use of equation (31) the number 
contributing to the second set, Nz +(z), is calculated as 

N2+(2)= ~ ~ o9hlt;2 
n l = l  n 2 = l  

+ Z ~ o,,,~,,~=o~,+o,~={a,}. 
PI=I P2=1 

Finally, we have 

N + = N + m  + N+(2)= P - 4 t  + 2{f2t}, 
• ".D2 = P -  8 t+  4 { Q t }  . 

I m =  3 I The routes contributing to N~ are shown 
in Fig. 5 and there are four sets of routes i.e. 

the first set" ~ and 

the second set: ~ and 

the third set: ~ and 

the fourth set" ~ and 

Fig. 5. Routes contributing to N +. 

By a similar consideration using equations (30) and 
(31), the number contributing to the ith set of routes, 
N~ ¢°, is calculated as follows: 

N + m =  ~ (p-3)ogp+ ~ (n-3)o9a 
p = 3  n=3  

p = l  

+ ~ ( n -  3)o9~ + o9~ + 2(.0i 
n = l  

= P -  6t + 2{Q~} + (o92 + o9~.) 

N+'2)= ~ ogz, i +  ~ c,o~1 
p = 2  n = 2  

= Z og,i-og~i+ Z og~,-~i, 
p = l  !1=1 

= { e , }  - (o9~ + o9~O 

N+'a ' - -  Z ogip+ Z o91~ 
p = 2  n=2  

-- {at} -(o91i+o9~,) 

N ~  (4) _ .  (.02 _~ 0.)~. 

Thus, we have 
4 

N + =  Z N + ' ° = P - 6 t + 2 ( 2 { C 2 t } + { e 2 } )  • 
l = I  

• ".D3 = P -  12t + 4(2{a t }  + {£22}1 

with 
{t?2} = o92 + o9~ - (oga + o9id. 

Table 1. Lists o f  N +, Dm, N +*and D* for  some values o f  m 

Complex out-of-step structure, Complex APD structure, ([M]I[2~r]) 
(alDlazbz... atb t) with [M]=(aab I . . .  asbsas+l) 

m N + + * - -  + N m --N m/2 ,2s+l=t  
0 P M 
1 P - 2 t  M -  1 -2s  
2 P - 4 t +  2{I21} M-2--4s+2{I2~} 
3 P - 6 t  + 4{£21} + 2{f22} M -  3 - 6s + 4{£2~} + 2{~2~} 
4 P -  8t + 6{12x} + 4{f22} + 2{f23} M -  4 -  8s + 6{I2~} + 4{12~} + 2{£2~} 

m--1 m--1 

N + = P - 2 m t + 2  ~ (m-r){f2,} N + * = M - m - 2 m s + 2  ~ (m-r){t2~} 
r = l  r = l  

m O m = Cm/P D* = C;,/m=Om/2 
0 P M 
1 P - 4 t  M - 2 - 4 s  
2 P -  8t + 4{~1} M -  4 -  8s + 4 {.Q[} 
3 P -  12t+ 8{O1} + 4{g22} M -  6 - 12s+ 8{g2[} + 4{g2~} 
4 P-- 16t+ 12{t2x}+ 8{Q2} +4{~3} M -  8-16s+ 12{t2[} + 8{t2~} + 4{.Q;} 

m--1 m--1 

D m = P - 4 m t + 4  ~ (m--r){.Qr} D * = M - - 2 m - 4 m s + 4  ~. (m-r){.Q*} 
r = l  r = l  
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Continuing the similar process, we get the results 
listed in Table 1. Furthermore, we can show that the 
following relations hold in general: 

m - - 1  

N + = e - 2 m t + 2  ~, ( m - r ) { [ 2 , }  
t = l  

with N + = P  and N + = P - 2 t  (32) 

and hence 
r a - - 1  

D m = P - 4 m t + 4  ~, ( m - r ) { 1 2 , }  
r = l  

with D o = P  and D I = P - 4 t  (33) 

(see Appendix II), where {g2r} is the symbol implying, 
e.g. 

{[25) = {f2s)oaa- {t25)¢,¢. (34) 
with 

= CO 5 + 095 

-[- (-03il "31- 0)131 "Jr- 0)1i3 -~- (J)2ff.l -}- (-'02i2 "~ ('01~.2 

-{-- (D~I i -q- 0)i3 i -{- 6011 ~ --}- 60~2 i -[- (D~j.~ "-I- (-Di2 ~ 

q- 0 9 i i i i  1 + 0 9 D i i i  (35) 

{,Os}©ven = {ff25 }2 -{-- { ~ 5 } 4  

= 0)4i -t- (-D3~. -t- (.025 -~- (DI~ 

+ c03i + c0~2 + ¢0i3 + ¢0i4 

+ o)2iii + o)liff + o)ii2i + o)iii] 

-A 1- (.Off.lil. -}- 0.)i2~1 -31- (_.0il~l "q- (_O~li] . (36) 

Namely, for example, {f2,}oda is the sum of occurring 
frequencies of the types of covx~l.., v,~,v,+l and 
(Db ln l . ,  .bgng~g+l with 

g + l  g 

~ p , +  ~ n , = r ,  
i=1  i=1  

in the layer sequence symbol, i.e. those of all com- 

binations of the odd partition of a given r. Some exam- 
ples of {f2,} are listed in Table 2. 

From the general expressions of N + and Din, equa- 
tions (32) and (33), we can derive the following rela- 
tions: 

{f2,} = (N+_I-  2N + + N++i)/2 

= (Dr- 1 - 2D, + D, + 1)/4 

= ( C , - 1 -  2C, + C,+ 1)/4P = {g2e_,} (37) 

t = ( P - D 1 ) / 4 = ( p 2 - c ~ ) / 4 P  . (38) 

Furthermore, from the general expression of Din, w e  get 

C m = e D m = e 2 - 4 P q m  (39) 

with 
m - - i  

qm=mt - ~, ( m - r )  {f2,}. (40) 
r = l  

Thus, Cm obtained from the observed intensities with 
the normalization condition given by equation (27) 
should be an integer which satisfies equation (39), i.e. 
any one of a set of integers which start from p2 at 
intervals, 4P. As a result, even if the observed inten- 
sities are not so accurately measured, we may obtain 
the correct layer sequence, as will be seen in § 7. 

6. The case of  the complex A P D  structure 

If a period P is even, i.e. P = 2 M  and if all Iz's with l 
even vanish, we obtain, by the use of equation (22), 
the relation 

M-1 v-1 M-1 ml'  = M ( D o + D M )  
0 ~- ~ I2z,= ~ O m ~ c o s 2 / / 7 ~  

1 '=0 m=0  I ' = 0  

and hence 
D M = - - P  i.e. NZ~=P.  (41) 

This equation indicates that the structure should be 
the complex A P D  structure, ([M] I [/14]) with P = 2 M ,  
in accordance with equation (19). 

r 

(o) 
1 

2 

3 

4 

Table 2. Lists o f  {f2,} and {f2; } for  some values o f  r 

{~,} = {a~,_,} 

t=(P-Dz)/4 
091 + co i 
= ( P -  291 + DD/4 
co2+ co~- (coil + ooii) 
= (D 1 - 2D2+ D3)/4 
o9 3 + cog + o9111 + OOhi 
- (c~2i + o91~+ co~, + coiz) 
= (D 2-  2D 3 + D4)/4 
fO4 -J- (.02.-a t- (.O2i 1 -{- (_Olff.l -{- (.01i2-}- (-O~.li -~- fOi2 ~ -J- foil  ~ 
-- (093] -}- (.O2~-{- O)1] -~- ~ ]1  q- ('Off.2 "~" O"9i3 "~- Oglili -{- ('Oil~l) 

{.Q~} = {f2,}/2= - {f2~_, } 
s = ( M -  2 - D~)/4 

= ( M -  2D~ + D~)/4 

= (Dl -- 2Dz+ Ds)/4 

=(D~- 2D; + DD/4 

{f2,} = (N+_,- 2N + + N++ 0/2 
= (Dr- i -- 2Dr  + Dr +,)/4 
=( Cr_,--2C, + C,+I)/4P 

{.Q* +* +* +* } = ( N , _ I - 2 N ,  +N,+0/2 
= ( O  ~_ 1 - 2 D *  + D * +  014 

* 2 * * M = ( C , - 1 -  C,+ C,+,)/4 

A C 2 7 A -  10 
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In  the case o f  complex  APD structure,  the un i t a ry  
intensi t ies  o f  the superlat t ice  reflexions are given by  
equa t ion  (19), i.e. 

where  

{ 1~=0 for  l: even 

11=41; for  l: odd  

i 2 ~ (42) I;= ~ ~. exp (inlO) and  0 -  M 
n = 0  

with  the n o r m a l i z a t i o n  cond i t ion  
2 M - 1  

I~ = M 2 (43) 
Iodd = 1 

which  is ob ta ined  f rom equa t ion  (27). 
I f  the  co r r e spond ing  quant i t ies  to N +, NT,, Dm and  

{t-2,} are coun ted  no t  over P bu t  over  M and  deno ted  
respect ively by  + ° Nra , NT. *, D~, and  {g2~ }, then  we ob ta in  
f rom their  defini t ions the fo l lowing  relat ions" 

N + = 2 N  +°, N~, = 2 N 7 , * ,  

a n d  therefore ,  

Dm = 2 (N  + * -  N;,*) = 2D~, wi th  D ~ =  M ; 
+ *  - *  

N m + M = N m ,  Nm~.M=N +* 

and  therefore,  

D~,+M= - D ~ ,  ; 

+ *  - *  A T - *  AT+* NM-m=Nm , ~, M-ra =1' m 

and  therefore,  

N + * + N ~ * = M  ... D ~ = 2 N + ~ * - M = M - 2 N T , ,  * 
(44) 

(Q,}=2{K2; } (see A p p e n d i x  III) .  

Us ing  these relat ions,  we can derive f rom the corres-  
p o n d i n g  equa t ions  in the previous  sect ion the fol- 
lowing relat ions" 

M - 1  

. ~z (45) l*l = ~ Dm cos mlO for  I odd  wi th  0 =  - ~  
m = 0  

P - 1  

C,*,= ~ 1; cos mlO= MD,* (46) 
l o d d = l  

In -- 1 

N+" = M -  m - 2ms + 2 E (m - r) {(2: } 
r = l  

with  No+*=M and  N ~ + * = M - 1 - 2 s  (47) 

In -- 1 

D ~ = M - 2 m - 4 m s + 4  ~ (m-r ) {£2 ; }  
r = l  

with  D ; = M  and  D ~ = M - 2 - 4 s  (48) 

{D* } = (N~+*l - 2N~ +* + N,+;1)/2 

= ( D ~ _ i - 2 D *  + D ~ + 0 / 4  

= ( C ; _ I - 2 C ~  +C~+O/4M=--{f2"M_r) (49) 

s = ( M - 2 - D * ~ ) / 4 = ( M 2 - 2 M - C * O / 4 M .  (50) 

Some examples  are l isted in Tables  1 a n d  2. 

7. E x a m p l e s  
Ideal cases 

There  are 21 i ndependen t  s t ructures  in the case o f  
the complex  APD s t ructure  wi th  M = 9  i.e. ([9] I [9]). 
They  are listed in Table  3 toge ther  wi th  D~, ob ta ined  
by the way  shown in Fig. 3(c) and  I ;  ca lcula ted  f rom 
equa t ion  (45). 

Tab le  3 .21  independent structures o f  ([M] [ [3~t]) with M = 9  and the 

S [9] DI* D2* D3* D4* I1'  13" 
0 (9) 7 5 3 1 33"163 4 

(7il)  3 5 3 1 25"645 0 
(6~1) 3 1 3 1 19"517 4 

1 (5~1) 3 1 --1 1 15"517 12 
(522) 3 - 3 - 1 1 9"389 16 
(4~1) 3 1 - 1  --3 14"127 16 
(4~2) 3 -- 3 -- 5 -- 3 3"999 28 

(5"1"1T1) - 1 5 -- 1 1 14"127 4 
(4~1il) - 1 1 - 1 - 3 6.609 12 
(41211) - 1 1 3 - 3 10.609 4 
(331T1) - 1 1 - 5 1 3.999 16 

2 (3i-3il) - 1 1 - 1 5 9.389 4 
(3~2T1) - 1 - 3 - 1 1 1.871 12 
(32121) - 1 - 3 3 1 5.871 4 
(3~1T2) - 1  - 3  - 1  - 3  0.481 16 
(3T221) - 1 - 3 3 5 7.261 0 
(22221) - 1 - 7 3 5 1.133 4 

(311i111) - 5 5 - 5 5 3.999 4 
3 (221TIT1) - 5 1 - 1 1 0.481 4 

(2121111) - 5 1 3 - 3 3.091 0 
(2i1~1il) - 5 1 3 - 7 1.701 4 

values of  D~ and I; 

/ 5 *  

1-704 

3.094 
10.612 
6"612 

14"130 
0-484 
4"002 

0"484 
1 "874 
5"874 
4.002 

14.130 
15.520 
19-520 
9"392 

25"648 
33.166 

4"002 
9"392 
7"264 
1-136 

/ 7 *  

1.133 

7-261 
5.871 
1.871 
0.481 
9.389 
3.999 

9.389 
15.517 
19.517 
3.999 
0.481 
6.609 

10.609 
14-127 
3.091 
1-701 

3.999 
14.127 
25.645 
33-163 

/ 9 *  

1 

9 
1 
9 
1 
1 
1 

25 
9 
1 

25 
25 

9 
1 
1 
9 
1 

49 
25 

9 
1 
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Some examples of the Patterson method in the ideal 
cases are shown below: 

[ [9]=(9) w i t h ( 7 , 5 , 3 , 1 )  I Here, (7, 5, 3,1) shows 
the values of(D*~,D*a,D;, D~) obtained from Table 3. From 
equation (50), we have s = ( 9 - 2 - 7 ) / 4 = 0  and hence 
we have at once [91 = (9). 

[ [9] = (71-1) with (3, 5, 3, 1) [ From equation (50), we 
have s = ( 7 - 3 ) / 4 =  1 and hence we have [9]=(albla2) 
with al + bl + a2= 9. From equation (49), we have 
col + col = (9 - 6 + 5)/4 = 2 and hence the third number 
should be 7 or - 7 .  However, we can assume without 
loss of generality that the first number al is the greatest 
of all and we have at once (7i1). 

[ [9]=(441) with (3, 1 , - 1 ,  - 3 )  ] From equation 
(50), we have s = ( 7 -  3)/4 = 1 and hence we have [9] = 
(ajha2) with al + bl + a2 = 9. From equation (49), we 
have col +coi = (9 - 6 + 1)/4 = 1 and hence we can put 
a2 = 1 without loss of generality, and we obtain [9] = 
(albll)  with a l + b x = 8  and al, b l>2 .  From equation 
(49) or Table 2, we have {f2~} = o)z + o9~- (coil + coil) = 
(3 - 2 - 1 ) / 4  = 0. Since {t'2~ } = 1, we have coti+ colt = 0and 
hence o9z + co~ = 0 and al,bl -> 3. As a result, there are two 
choices [9]=(531) and (441). From Table 2, we have 
{f2;} = (1 + 2 -  3)/4 = 0 and hence the case (531) can be 
excluded and we obtain (441). 

] [9]=(2T1211-1) with ( - 5 ,  1, 3, - 7 )  I From equa- 
tion (50), we have s =  (7 + 5)/4 = 3 and hence we have 
[9] = (alDla2b2aaDaa4) with al + bl + a2 -t- b2 + a3 + b3 + a4 
=9.  From Table 2, we have co l+co i=(9+  10+ 1)/4=5 
and hence we have three choices such as [9] = (2211111), 
(21-2Tl1-1) and (2i1211-1). From Table 2, we have 
o32 + co~ - (coli + coil) = ( -  5 - 2 + 3)/4 = - 1. Since we 
have co2 + co~ = 2, we get coli + coil = 3 from which we 
can exclude the first choice. From Table 2, we have 
{~2;} = co3 + co~ + corn + c o i a -  (cozi + co~ + co~l + coi2) = 
( 1 - 6 - 7 ) / 4 = -  3. This value is compatible only with 
the third choice i.e. [9] = (21-1~ffl). 

Real case 
It was reported by one of us (Kakinoki, 1962) that 

the use of the unitary intensity, I~, was useful in deter- 
mining the layer sequence of a complex APD structure 
of ([9] [ [9]) with [9] = (22221) and P = 18, which had been 
adopted by Fujiwara (1957) as a starting structure in 
the analysis of the structure with M =  1.8, and that 

Table 4. Unitary intensities, I*~, for the structure 
([9] I [9]) with [9] =(22221) and P= 18 

A rough  The  roughest  
l Calculated es t imat ion est imation 

1, 17 1.1 0 
3, 15 4"0 > I1",I7",I9" 0 
5, 13 33"2 > 413" 40"5 
7, 11 1"7 0 

9 1"0 0 

the correct structure was obtained only by assuming 
the relations I ;  > 41; and 1; > I~, I~, I; .  

It is shown below that by the use of D~, the correct 
structure can be obtained even by a rough estimation 
of the observed intensities as given in the last column 
in Table 4. By the use of these values, D~,'s in equation 
(46) are calculated as listed in Table 5 together with 
the correct values of them. By the use of D~, = - 1.57 
and equation (50) with M = 9 ,  s is calculated as s =  
( M -  2 -  D*~)/4 = 2.14. Therefore, we may put s = 2 and 
the sequence should be 

with 
[9] =(albla2bza3) 

al + bl + az + b2 + a3 = 9. 

Table 5. Values of D~, 

D* calculated from 
m the roughest estimation Correct values 

of intensities 
0 9 9 
1 - 1.57 - 1 
2 - 8.46 - 7 
3 4.50 3 
4 6.89 5 

By the use of D;=9 ,  D'x=-1.57, D2= - 8 . 4 6  and Table 
2, {f2~} is calculated as 

{12x} =coi +coi = (Do-2D1 + Dz)/4=0"92 

where we may put o91 = 1 and, as a result, the sum of 
the remaining four letters is 8 and each of them is larger 
than or equal to 2. Hence we have coz+co~=4 and 
finally, we get the correct layer sequence [9] =(22221). 

Thus, even with such a roughest estimation of inten- 
sities as shown in the last column of Table 4, we can 
obtain the correct layer sequence by the use of Patter- 
son method. 

Generally speaking, the value of D m obtained from 
the observed intensities is not an integer because of ex- 
perimental errors. If, however, we use two successive 
integral values between which Dm lies, the incorrect one 
will be excluded in the course of calculating {f2r} as r in- 
creases, or, at least, we can limit the number of models 
to be examined. 

A P P E N D I X  I 

T h e  re la t ion  b e t w e e n  Cm and the  usua l  P a t t e r s o n  f u n c t i o n  

The usual Patterson function is defined as 

P(uvw) = 1 V--o ~ ~ ~ Ihkzcos2n(hu+kv+lw) (A1) 

where v0 is the volume of the unit cell with a height Pc. 
In order to get the relation between Cm defined by equa- 
tion (28) and P(uvw) defined above, we have only to 
substitute the unitary intensity, Iz, defined by equation 
(7) into Ihk~ in the above equation. From the properties 
of the unitary intensity which are given by equations 
(7), (11) and (22), Ihkz has such properties as 

A C 27A - 10" 
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Ihkl+.V=Ihkz l =0,  1, 2, . . ,  P - 1  
n=0 ,_+ l ,  + 2 , . . .  

Ihkz =P2cJt, nv for h + k = 2 g  
Ihkl =Iz in equation (22) 

for h + k = 2 g +  1 (A4) 

where g is an integer including 0. 
Using equation (12), we can calculate equation 

(A1) as follows: 
P - - 1  

voP(uvw)= ~ ~, E Ihk, 
h k 1 = 0  

oo 

× ~ c o s 2 ~ { h u + k v + ( l + n P ) w }  

P--1 

= Z Z Z Ihk, COS 2rffhu + kv + lw) 
I=0  h k 

x ~, 6(ew-m) (15) 

by the use of the well-known relations 

i ~o 1 oo z cos 
n ~ - - O O  

oO 

sin 2rmax=O (A6) 
n ~ - - o o  

where 5(x) is Dirac's delta function. Since we have 
5(Pw-m)  in equation (A5), w may be limited to 
m/P and hence we rewrite equation (A5) as 

I P - '  (hu+kv+ ~ - )  VoP (Uv--~ ) =--fi ~=O~h ~ Ihk, COS 2rC 
(A7) 

where we can limit the values of m as 

m = 0 ,  1, 2, . . . ,  P-1 

since we may put 0 < w < 1. 
From equations (A3) and (A4), the calculation of 

equation (A7) results in 

(A2) 

(A3) 

1 e-I oo o o  [pzjl, 
( * -7 ) -  t i p  

L 

1 p cos2rch(u-v) 
P oo 

.P--1  oo 

+ ,=0~I',=-oo ~ cos2rc{h(u-v)+v+ ---~-}1 
oo 

x Z 5(2v-p)  (18) 

by the use of equation (A6). Since we have J ( 2 v - p )  
in equation (A8), v can be limited to p/2 and hence we 
can rewrite equation (A8) as 

p 
voP (u 7) 1[ = _ ~  p2 ~ cos2~h U-- 

h ~ - -oo  

e-, ~ { ( p )  p _ ~ } ]  
+ ~ It cos2zc h u -  + ~ +  

1 = 0  h = - - c o  

(19) 
where we can limit the values o fp  a s p = 0  and 1 since 
we may put 0 < v < 1. 

For p = 0, equation (A9) is calculated as 

voP uO = p2 h=~_oo COS 27rhu 

+ ~ I, ~ cos2r~(hu+ 
/ = 0  h = - - o o  

- 2P p z +  Z I, cos2rc E 5 ( u - q ) .  
I = 0  q = - - o o  

(A10) 

Since we may put 0 _< u < 1, we have q = 0 and therefore, 
u =  0. Using Cm defined by equation (28), and equation 
(24), we can rewrite equation (A10) as 

( p )  1 
voP O0 =~-fi(PZ+C,,,)=N.+,. (Al l )  

Similarly, for p = 1 we obtain 

1 
v0P (½ ½ p ) = - - f f f f ( P Z - C m ) = N , -  ~ . (Al2) 

APPENDIX H 
The derivation of the general forms of Nm + and D m 

From equation (30), we have 

E c°p= E o)a=t, E pc°v+ E m°r,=P" (A13) 
p = l  n = l  p = l  n = l  

In order to derive the general form of Nm +, it is con- 
venient to divide the forms of routes contributing to 
N + into two parts; one is the linear form as shown in 
Fig. 6 and the other the zigzag form as shown in Fig. 7. 

[ Linear form [ If we have two letters p and g in the 
layer sequence symbol 

(aiDla ff)2 . . . a,b,) , 
then the number of pairs contributing to N + is given 
by (p - m) + (n - m) so long as p, n ___ m. Therefore, the 

1 2 3 m-1  m m+l 
:~--0--0-----0--0---~ 

1 2 3 m-1  m m+l 
Fig. 6. The linear form of routes contributing to N +. 
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total number of pairs contributing to Nm + from the 
linear form, N +a), is calculated as follows" 

U + a ) =  ~ (p-m)c%+ ~ (n-m)o)~ 
p=m n=m 

m--1 
= ~, (p - m)cop- ~ (p-  m)c% 

p = l  p = l  

m-1  
+ Z (n - m)coa- Z (n - rn)og~ 

n=l n=l 

and hence, by the use of equation (A 13), we get 

m--1 
N+")=P-2mt+ ~ (m-r) (co ,+co; ) .  (A14) 

r = l  

Zigzag form [ For simplicity, we consider here 
only the zigzag form for which both ends are positive. 
This form, as can be seen in Fig. 7, consists of three 
parts; the first part is the first u positive layers, the 
second the middle S layers and the third the last v 
positive layers. Thus, the zigzag form is expressed in 
a general form (ug~pxg2pz. •. ~_ lPv- 1Fly v) with 

v--I 

~p~+ n~=S and u+S+v=m+l . 
i=1 i=1 

Therefore, if in the layer sequence symbol we have a 
2v + 1 letter sequence such as (poS[y__-~)p~) with (S[;_~)) 
-- (n~p~n2P2 • • • ~ -  ~pv- ~ ) ,  P0 >-- u andp~ > v, then it con- 
tributes to N,+(=+); here the superscript (z+)  means 
the zigzag form for which both ends are positive. 
S[;-__-~ ) represents one configuration of 2 v - 1  letter se- 
quence for which both ends are negative and with fixed 
v,  lues of S and v. 

Therefore, Nm + (=+) is given by 
m--1 

= N m ( S 2 v _ l )  ( A 1 5 )  N + ' = + '  + ' - - '  

s = ~  . s2<;-=~> 
with 

m-S + ( - - )  

( - - - - )  where the summation over $2~_, means that the sum- 
mation is carried out over all possible configurations 
of 2 v -  1 letters when S and v are fixed. The calculation 
of equation (A16) is performed, by the use of equation 
(31), as follows: 

1 2 3 u u+S+l u+S+2 m m+l 

J U+I  u + S  ,,._ ~' 

u S v - m  - u - S  

u+l u+3 ~ 

1 2 3 u u+S+l u+S+2 rn m+l 

Fig. 7. The zigzag form of routes contributing to N +. 

m--.7 + ( - - )  
Nm ( S 2 v - 1 ) =  u~ l  po~=u pv--v=~m+l-S-u (d)PoSlv---1)Pv 

m-- S {pv~ = m-- S--u 
- -~  = C O p _  ~ (  - - ) _  - -  

71.00~----U i 0"2V--1 v.  pv~__l ('DPoSIv--I'p v 

x (1-au, m_~) (1-a~ ,~_0 = ~ .  = c%04;-_-- ? 

m--S--1 m--S--u 

-- u~=l po~= u pv~= 10)POS(v._-l)pv (1-  6s, m--l) 

= ~ l  I °~°s(~7~) 
u--1 

-p~l°opos(2~_Yl)(1-&.,O(1,&s,,,,-1)} 

u--I } 
- . ~  C~poS2(;__~)p~ (1-&.,~) (1-6s ,  m-2) ( 1 - 3 s , , . - 0  

m-S _ l ~ s  u-, 
- -  u~=l 60Sly--l) I. u:2 po~=l (-DPOS(2v--1) 

m--S--1 m - S - u  

+ u~=l pv~=l (-DSlv--1)Pv} (1- (~s ,m-1)  

m--S--1 u--1 m--S--u 

+ L ,L ,L 
×(1--~S,m-2) (1--(SS, m-1) . 

Finally, changing the order of summations, we have 
+ ( - - )  Nm (S2v-1)=(m- S)coSt2v- 1) 

m--S--1 
- .'~=1 (m-S-P){CO.s(27~) +COs[~-_~)p}(1--5S, m_1) 

m--S--2 m--S--Po--1 
+ p ~ ,  p~l (m--S--p°--Pv)C%°s(2"~)l'v 

× (1 - 5s,,._O ( 1 -  5s, , ._2) .  (A17) 

Similarly, corresponding to equations (A15) and (A17) 
we obtain 

m--I 
N+(~-)-- Z 2 2 A:+,'c(++), ( A I 8 )  m --  ~' m k~J 2v--1 / 

S=I  v S (+ +) 2v--, 
with 

Nm+(~'(+ +)~ =(m _ w,-,-1 : S)co4+~3) 
m--S--I 

-I  ~ ,  (m-S-'){°~si:_?+O'si+,~'~}(l-~s.m-,) 

m - S - 2  m-S--no-I 
-[-no~= 1 n~= 1 (m--S--no--n'~co-,.t++)= v/ no°2v -- 1 nV 

× (1-Ss ,  m-,) ( 1 -  &s,.,-2). (A19) 
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As a result, N,,, + is expressed as 

N + =N+m")+N+(Z+)+N+(~-) 
=P-2mt+N,+,m-N+m(2)+N+(3) (A20) 

with 

m--1 

N+(1)-- f2,=l(m--r) (cor+c_~r) 

m--1 [ v,~ IS ( ,~ (./)Si~_._l) /] + Z (m-S) + ~ coSI+v.+I' 
S=l ' -  2~---q si++l) - Jl  

(A21) 
m--2 m--S-- 1 

N+(2)= Z Z (m-S-p)  
S=I  p = l  

+ s(+~+) -/co:s(+ + ) , -  2,-1 + C°si++,)b}] (A22) 
2v--1 

m--3 m--S--2 m--S--Po--1 

N+(3)= Z ~ Z (m-S-po-p~) 
S = I  po=l Pv=l 

2v-1  

(123) 
( - - )  ~ ( + + )  The summations with respect to v, $2~-~ and ~,2~-1 

in the square brackets in equation (A21) mean taking 
all configurations of odd number of letters whose sum 
is fixed to S. Hence similarly to equation (35), this 
term may be expressed as {f2s}oaa and (co~+o)~) may 
be expressed as {f2,}1. Using these notations, we can 
rewrite equation (A21) as 

m--1 

N +(t)= ~ (m-r)[{g2,}~ + {f2~}oaa] • (124) 
r = l  

With respect to Nm + (2) and Nm + (% the variables in sum- 
mations are changed so that p+S in Nm +(2) and P0+ 
S+p~ in N +(3) may be equal to r, as follows: 

m--1 [ r ~ l  { ~-'-1 $2( N +(z)= 2 ( m - r )  
~=2 t s = 1  ) (co~-ss(U-? 

+ 

(A25) 
and 

m ,  

N+(3)= 2 ( m - r ) ~  ~ ~ copoS~z-~--i),_S_po 
r=3 S=I  po=l S _ ) 

co- (+ + ) - - / .  (A26) ~ P0S2v-- 1 r--S--p 0 
S ( + + )  J 

2v--i 

Similarly to the case of N +m, the summations with 
( - - )  ~ ( + + )  respect to S, v, $2~_ 1 and ~,2v- 1 in the square brackets 

in equation (A25) mean to take all configurations of 
even number of letters whose sum is fixed to r and 
hence equation (A25) can be rewritten as 

m - 1  
N+(2)=2 ~ (m-r){Q~}~, 

r=2 

--2 ~ (m-r){g'2~}~v~n • 
r= l  

(A27) 

Using a similar notation, we can rewrite equa t ion  
(A26) as 

m--1 

N2(a)= Z (m-r){f2,}o,a>3 
r=3 

m--1 m--I 

= Z (m-r) {Q,}oda-- ~ (m--r) {g2~}~. (A281 
r= l  r= l  

Finally, substitution of equations (A24), (A27) and 
(A28) into equation (A20) gives 

m--I 

N+=P-2mt+2 ~ ( m - r )  {f2~} (A29) 
r= l  

because of equation (34). As a result, we have 

m--1 
Dm=2N,+-P=P-4mt+4 ~ (m-r){£2~}. (A30) 

r= l  

APPENDIX III 
Verification of the relation {f~, } = 2{~*  } 

Let a letter sequence be (S) and let its occurring fre- 
quency in the symbol ([M] [ [il,7]) be CO(s) of which 
.0(1) (s) are found in the first [M] and ,.,a) in the last [/Q]. w(S) 
For example, in a layer sequence symbol such as 

([1011[]-0])--((212_1 121) [ (2121T2_1)) with P = 2 0 ,  
there are three (S)=21,  two in the first [10] and one in 
the last [T0], as shown by the underlining. Thus, we 
have 

(D2~ - -  3 with -2r°~") = 2 and w2i-O)(2) = 1 . 

Generally, we have 

. . . .  (1) _1.. r,,(2) (A31) CO(S) t~,(S) / w ( S )  • 

Let a letter sequence which is obtained from (S) by 
changing all signs be (S) and let its occurring frequency 

(1) in the symbol be co~ of which co~ are found in the 
first [M] and -(z) in the last [A?]. In the case of the 
example shown above, they are 

(g )=21 ,  con=3 with ~*) 1 and co~2])=2 t,~,21 - -  

Generally, we have 

m -  (2) (A32) co(-~5 = co~ -f co~5 . 
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Since the structure is the complex APD structure of the 
type ([M]I [M]), we should have 

c~(1) ..,(z) and (2) _ (2) (A33) ( ~  -~ u~(S ) CO~-~ = tO(S ) • 

As a result, we have 

. . . .  m -  (1) (A34) CO(s) - -  w ( s )  -t- CO(s3 = c °~3  

and hence 

. (1) ~ (A35) os~,,(i) + w~ 3 ~, 09(S) + CO(-~5 = "-t~'(s) 

this meaning that the following relation holds in 
general" 

{t'2,} = 2{f2"}. (A36) 
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Study of Microstructure of Chrysotile Asbestos by High Resolution Electron Microscopy 
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(Dedicated to Professor Tadatosi Hibi in honour o, his 61st birthday) 

Several samples of chrysotile asbestos from different localities, including a synthetic sample, were 
electron-microscopically observed by the lattice imaging method along two directions parallel and 
perpendicular to the fibre axis. The results are as follows: (a) The lattice fringes of 4.5 A corresponding 
to 020 were often tilted to the edge of the fibrils with an angular distribution ranging up to about 10 ° 
with a peak value at a few degrees, depending on the sample. (b) Most of the fibrils examined were 
hollow cylinders and their circumferential lattice layers form spiral or multi-spiral layers. The perfectly 
concentric cylindrical layers were also found with a frequency depending on the sample. (c) Unusual 
growth patterns which cannot be explained by Jagodzinski and Kunze's model were observed. (d) The 
lattice images of the cortical fibrils (cone-in-cone shape) were observed in the synthetic sample. (e) Most 
fibrils greater than about 350 A in diameter showed traces of discontinuous growth in two or three 
steps, depending on the growth conditions, and this gave rise to various distributions of the fibril 
diameters. 

Introduction 

From studies using the methods of X-ray diffraction, 
electron microscopy and electron diffraction, it has 
been pointed out that there are morphological and 
structural variations in chrysotile asbestos (Whittaker, 
1951; Jagodzinski & Kunze, 1954; Whittaker, 1955, 
1956a, b,c, 1957; Whittaker & Zussman, 1956). In 
earlier X-ray studies, however, single crystals were not 
available, while in subsequent studies made on single 
crystals (individual fibrils), by means of electron mi- 
croscopy combined with selected area electron diffrac- 
tion, the instrumental resolution was not high enough 
to resolve the fine structures (Honjo & Mihama, 1954; 
Zussman, Brindley & Comer, 1957; Bates & Comer, 
1957). 

Recently, it has become possible to observe lattice 
planes in the individual fibrils of chrysotile (Fermindez- 
Mor~in, 1966; Yada, 1967), and it has been found, for 
example, that the circumferential lattice images ob- 
served in the cross-section of a fibril show a spiral or 
multi-spiral structure. The previous work by the pres- 
ent author, however, was done for a sample from only 

one source (Quebec, Canada,) and, moreover, the ob- 
servation of the detailed structure at the inter- and 
intra-fibril sites was hindered by the damage due to 
irradiation by the electron beam required for high 
magnification electron microscopy. Therefore, in order 
to obtain a comprehensive understanding of the micro- 
structures and growth mechanism of chrysotile, it 
seemed desirable to study samples from different loca- 
lities by the use of a improved technique by which the 
radiation damage was minimized. 

The specimens and experimental technique 

Table 1 shows a list of the samples examined. Most of 
these samples are chrysotile ores, except the last one 
which is powder Mg-chrysotile synthesized under con- 
trolled conditions (Noll, Kircher & Sybertz, 1958, 
1960). 

A small quantity of chrysotile was torn off with 
tweezers, and as in the previous work (Yada, 1967) 
observations were made from two directions, parallel 
and perpendicular to the fibre axis, employing the sec- 
tioning technique by ultramicrotomy as well as the 


